A composite figure is composed of multiple shapes such as triangles, parallelograms, circles, trapezoids, rectangles, and more. To find the area of a composite figure you add (and subtract) the shapes which comprise the figure. It helps to list the names of the shapes you are using. Then list the formulas for each shape. Substitute the values into each formula to find composite area.

$$
\begin{aligned}
& \text { rectangle }+ \text { half-circle - triangle } \\
& =\mathrm{b} \cdot \mathrm{~h}+\frac{1}{2} \pi \cdot \mathrm{r}^{2}-\frac{1}{2} \mathrm{~b} \cdot \mathrm{~h} \\
& =(19) \cdot(6)+\frac{1}{2} \pi \cdot(3)^{2}-\frac{1}{2}(6) \cdot(3 \sqrt{3}) \\
& =114+14.13717-15.58846
\end{aligned}
$$

≈ 143.73 square units
ex 2

$$
\begin{aligned}
& \text { rectangle - quarter-circle }+ \text { triangle } \\
& =\mathrm{b} \cdot \mathrm{~h}-\frac{1}{4} \pi \cdot \mathrm{r}^{2}+\frac{1}{2} \mathrm{~b} \cdot \mathrm{~h} \\
& =(10) \cdot(5)-\frac{1}{4} \pi \cdot(5)^{2}+\frac{1}{2}(10) \cdot(3.5) \\
& =50-19.634954+17.5
\end{aligned}
$$

≈ 47.87 square units

$$
\begin{aligned}
& \text { rectangle }- \text { half-circle }+ \text { triangle } \\
&= \mathrm{b} \cdot \mathrm{~h}-\frac{1}{2} \pi \cdot \mathrm{r}^{2}+\frac{1}{2} \mathrm{~b} \cdot \mathrm{~h} \\
&=(18) \cdot(8)-\frac{1}{2} \pi \cdot(4)^{2}+\frac{1}{2}(8) \cdot(8 \\
&=144-25.132741+32 \\
& \approx 150.87 \mathrm{~cm}^{2}
\end{aligned}
$$

