11.3 Area of a Regular Polygon - Notes

This is a regular pentagon. What is the measure of the angle at x ?

If you divided 360° by 5 then you made the right move. Each of the spokes such as $\overline{A B}$ and $\overline{A X}$ is called a radius of the regular polygon because each would be a radius for the circle circumscribed around the polygon. They are all congruent. That makes $\triangle B A X$ an isosceles triangle.
$\overline{A O}$ is drawn to the midpoint of $\overline{B X}$. For an isosceles triangle the median is also an altitude and angle bisector so we get congruent angles at the vertex and right angles at the base. (By the way, $\overline{A O}$ is called an apothem)

Since you figured that $m \angle 1=72$ then what do you get for $m \angle 2$?
Also, hopefully you see where the length $\mathrm{BO}=5$ came from...

The next thing to do would be a little trigonometry.

$$
\begin{aligned}
& \tan 36^{\circ}=\frac{5}{\mathrm{~h}} \\
& \mathrm{~h}=\frac{5}{\tan 36^{\circ}} \\
& \mathrm{h} \approx 6.88
\end{aligned}
$$

So, the area of the blue triangle could be found with: \quad area $=\frac{1}{2} b \cdot h$

$$
\begin{aligned}
& \text { area }=\frac{1}{2}(10) \cdot(6.8819096) \\
& \text { area } \approx 34.40954801
\end{aligned}
$$

However, this isn't the entire pentagon. How would you get that?

If you said there are five triangles, then BAM! Multiply the area of the one blue triangle by 5 . So, the pentagon area is about 172.05 square units.
ex 1 Try the same process to find the area for this regular hexagon.

The angle in the middle is 360 divided by 6 which is 60 degrees. Dropping an altitude to the midpoint of a side gives a 30 degree angle and part of the base of that triangle is 8 . Using tangent we can find the height to be about 13.8564. So the area of that bottom triangle is about $1 / 2(16)(13.8564)$ or 110.85. The last step is to remember there are six of these triangles. So, our total hexagon area is about 665.11 square units.

Remember, the area of a circle is given by the formula: $A=\pi r^{2}$

